
0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E N o v e m b e r / D e c e m b e r 2 0 0 7 I E E E S O F T W A R E 4 7

description and publication mechanisms;1 oth-
ers use syntactic, semantic, and structural re-
views of Web service specifications.2

However, Web services have functional and
nonfunctional characteristics that can be diffi-
cult to present and control. Service behavior
and quality-of-service (QoS) parameters can
vary over time, and new services can emerge in
certain business areas. So, despite the avail-
ability of various tools, service-based applica-
tion developers who want to discover new
Web services often base their selections on in-
formation from business partners, experts in
the field, friends, or other people who have
had experience with a certain service.

To support such information exchange,
several proposals for applying recommenda-
tion systems to Web services discovery and se-
lection have recently appeared.3–6 Most rec-
ommendation systems manage information
about clients and items by collecting feedback
from clients and rating items. Existing recom-
mendation-based approaches to rating Web
service providers collect feedback based on ex-
plicit and often subjective opinions of service

clients.6 However, research has shown that
people are not usually willing to actively pro-
vide feedback.7

We have developed a recommendation sys-
tem that lets a service-based application devel-
oper benefit from other developers’ experience
without asking them personally to participate
in evaluating services. The overall approach is
to connect service requests with observation
data from the service invocations and execu-
tions that follow such requests. Data collected
during observations are the input to identify
which services are considered relevant for spe-
cific requests of a particular developer commu-
nity. Additionally, data about service execution
can help rank services according to their QoS.
The only effort requested of developers is to
enable observations of the Web service invoca-
tions their applications perform. In exchange
for this, they can access the history of service
executions and obtain recommendations about
which services to use for their tasks. This kind
of information can be particularly useful for
supporting self-healing behaviors in dynami-
cally reconfigurable systems.

focus
Improving Web Service
Discovery with Usage Data

S
ervice-oriented computing and Web services are becoming more
popular, enabling organizations to use the Web as a market for sell-
ing their own services and consuming existing services from others.
Nevertheless, the more services are available, the more difficult it

becomes to find the most appropriate service for a specific application. Exist-
ing approaches to Web service discovery tend to address different information-
processing styles. For example, some approaches develop extensive service-

service-centric software systems

Aliaksandr Birukou, Enrico Blanzieri, Vincenzo D’Andrea, Paolo Giorgini,
and Natallia Kokash, University of Trento

A recommendation
system to help
service-based
application
developers discover
appropriate services
uses a task
description
and the history
of previous
decisions made for
similar objectives.

The recommendation system application
we present here extends our previous work on
IC-Service,8,9 a general context-independent
recommendation service. IC-Service, in turn, is
based on our work in implicit culture, a con-
cept that defines a relation between a set and
a group of agents such that the set’s elements
behave according to the group’s culture.10

Specifically, we present details here about the
conceptual and algorithmic basis of the Web
service discovery method. We also present ex-
perimental performance results for the appli-
cation using two similarity metrics: one syn-
tactic and one semantic.

Implicit culture: Concepts
and implementation

When searching for a service to perform a
specific task, a developer or autonomous sys-
tem might lack knowledge about available
services and their actual behavior. Other users
who have previously faced similar needs might
know suitable services and have experience-
based preferences about which of them to use.
Such implicit knowledge exists in various ap-
plication areas and can be used to make prac-
tical recommendations. The implicit-culture
approach to decision support assumes that it’s
possible to elicit this knowledge by observing
the behavior of the involved parties and then

encouraging newcomers to behave similarly to
more experienced members of a community.

Figure 1 shows the metamodel of the im-
plicit-culture core concepts. It describes an en-
vironment in terms of agents that perform ac-
tions on objects. An object is defined by its
name and a set of related attributes. An at-
tribute represents additional information
about objects, actions, or agents and consists
of a name, a value, and the value’s type. An
agent is a particular type of object that can
perform actions. Several agents can compose a
group. The metamodel describes a possible re-
striction of an agent’s membership in a group
in time. An action is characterized by its name,
a set of related attributes, and a set of related
objects. Each performed action is a specific
kind of action that contains a time stamp and
the action’s agent. The metamodel considers
the actions in the context of situations—each
of which is represented by a scene that in-
cludes the set of possible actions and the set of
objects the agents can operate with. After the
agent performs one of the possible actions, the
performed action and the scene constitute an
observation.

In our application, agents are developers or
service-based applications that submit requests
for Web-service operations represented as ob-
jects. The recommendation system stores Web

4 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Group
0..* 0..* 0..* 0..*

0..*

name

Membership

endTime
startTime

Agent

1

1

Object

0..*

0..*

0..*

1

1

name

Attribute

name
value
type

1

Action

name

PerformedAction

timestamp

Scene

Observation
1

0..*

1

1

0..*

Figure 1. The meta-
model of implicit-
culture core concepts.

N o v e m b e r / D e c e m b e r 2 0 0 7 I E E E S O F T W A R E 4 9

services’ names and information about their
providers as attributes of operations, while it
models client requests, service invocations, and
corresponding responses as actions. For exam-
ple, a scene could be a set of actions corre-
sponding to the invocation of various service
operations:

invoke(...; getWeatherByZip
(service = DOTSFastWeather); ...)

or

invoke(...; getWeather
(service = GlobalWeather); ...)

An example performed action could be

invoke(Peter; getWeatherByZip
(service = DOTSFastWeather);
25-Jun-07-14:22)

which states that Peter invoked the operation
getWeatherByZip of the DOTSFastWeather
Web service on 25 June 2007 at 14:22.

The developer community relies on infor-
mation about actions and their relation to
situations—namely, which actions the ob-
served group usually takes in which situa-
tions. We designed the System for Implicit
Culture Support (SICS, see figure 2) to use
this information to give newcomers informa-
tion about other community members’ be-
havior in similar situations. When newcom-
ers start to behave similarly to the community
culture, a transfer of knowledge has occurred
and is reflected in the implicit culture.10 In
the weather example, the implicit culture can
contain the information about which services
a community of service clients usually in-
vokes for getting a weather forecast. The
SICS performs the knowledge transfer that
establishes the implicit culture. It consists of
three main layers:

■ The SICS Core stores observations, man-
ages theory, and facilitates actions by sug-
gesting scenes.

■ The SICS Remote Module implements
protocols for information exchange with
the client and converts the SICS Core’s ob-
jects into a format compatible with these
protocols.

■ The SICS Remote Client provides a simple

Java interface for the remote clients, re-
leasing them from dealing with informa-
tion exchange protocols.

Locally run applications can use the SICS
recommendation facilities as a Java library.
Distributed systems can access the SICS Core
as an Enterprise JavaBeans component or as
the IC-Service recommendation service. In the
case of IC-Service discovery, the SICS is de-
ployed as a Web service and accessed via the
SICS Remote Client.

The SICS produces recommendations ac-
cording to the specified rules-based cultural
theory. The SICS administrator can adjust the
recommendation strategy by configuring the-
ory rules essentially defined in the form

if antecedent then consequent

where the consequent and the antecedent con-
sist of one or several predicates. This rule re-
flects the intuitive notion that if the antecedent
happened, then the consequent happened and
will happen again. A cultural theory for Web
service discovery consists of a rule

if submit_request(...) then invoke(...)

Application

Serializable objects
over SOAP

Application

Serializable
objects

Serializable objects
over SOAP

SICS Remote Client

Serializable
objects

SICS Remote Module

Composer
Module

Inductive
Module

SICS
components

Configuration
Module

Storage
Module

SICS Core

IC-Service

Rule storage
Module

Configuration
and storage
components

Figure 2. The System
for Implicit Culture
Support general archi–
tecture. The Composer
Module provides recom-
mendation facilities;
the Inductive Module
discovers a theory that
expresses the commu-
nity culture; the Config-
uration Module config-
ures all parameters of
a SICS instance; the
Storage Module stores
information about the
application domain
(agents, actions, obser-
vations, and so on); the
Rule Storage Module
manages the theory (for
example, adding or re-
moving theory rules).

where the dots refer to specific objects or
attributes.

The Composer Module (CM) uses the de-
scribed theory rules to analyze observations of
agent behaviors. When an agent performs an ac-
tion, the CM matches the observation corre-
sponding to the action with the antecedent part
of the theory. Basically, at this step, the CM se-
lects the rule with the antecedent part most suit-
able for the current observation. Then it uses the
information in the observation to instantiate
variables in the corresponding rule’s consequent.
The consequent is called a cultural action, and
the system uses it for recommending scenes
where actions similar to the cultural action hap-
pened. The IC-Service provides a simple algo-
rithm that calculates the similarity between
pairs of actions using predefined similarity val-
ues for action names, time stamps, agents, ob-
jects, and attributes. A specific XML-based lan-
guage lets us configure these values for each
particular type (action, object, agent, or attrib-
ute) of each particular instance, element, or pair
of elements. Moreover, if an application requires
a custom algorithm for calculating similarity be-
tween certain kinds of elements, the SICS ad-

ministrator can substitute the default similarity-
assessment algorithm with the specialized one
using provided configuration facilities.

The Web service discovery system
The IC-Service manages the history of Web

services requests in our application system. It
also collects reports about heterogeneous
clients’ service invocations and helps develop-
ers discover and select services suitable for
their applications. Figure 3 describes the over-
all architecture, including the role of the IC-
Service. To join a community that shares serv-
ice usage experience, a developer must include
the SICS Remote Client in his or her applica-
tion to enable client-side monitoring of Web
service invocations.

In general, creating a Web services recom-
mendation system with the IC-Service requires
the following steps:

1. Formalize the application domain in the
implicit-culture terms.

2. Define the cultural theory.
3. Define similarity-calculation algorithms.

We now explain these steps in more detail be-
fore providing an example to illuminate how
the system works.

Application domain
In our system, agents are software develop-

ers or service-based applications willing to
find a Web service. Figure 3 shows a working
scenario, in which an agent submits a request
to the IC-Service, which returns a list of rec-
ommended services. The request contains a
textual description of the goal, the desired op-
eration’s name, a description of its I/O param-
eters, a description of a desired Web service,
and an optional list of preferred features, such
as a provider. The system stores the request as
an object of the submit_request action. It also
collects the feedback via the optional pro-
vide_feedback action, which expresses the
agent’s level of satisfaction with the result, or
via the invoke action, which marks a service as
suitable for the request. If the agent decides to
use one of the services, the system acquires
further information. The get_response action
marks a service as available and the raise_ex-
ception action signals that the service is either
not available or faulty. Having received the re-
sponse message, the application can generate a

5 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Registry

Service-oriented
application

Virtual
community

Stubs

Service-oriented
application

Stubs

IC-Service
Web service

Develop

Develop

Join

Submit
request

Recommend

Publish

Get new
Web servicesProvide

Respond

Invoke

Report

Figure 3. Web service
monitoring and
discovery with
IC-Service.

feedback on the basis of extra knowledge
about the expected result. For example, the
feedback is positive if the application obtains
the correct output.

Cultural theory
The IC-Service processes the request from

the system in two steps. First, it matches the
submit_request action with the theory to de-
termine the next action that must follow—that
is, the invoke action. Second, the SICS finds
situations where the invoke action was previ-
ously performed and determines Web service
operations used for similar requests. In this
step, the system calculates the similarity be-
tween the current agent’s request and the pre-
viously submitted requests. As a result, the IC-
Service returns a set of services that have been
used for similar requests in the past. The cul-
tural theory rule can be written as follows:

if submit_request(request-X) then invoke
(operation-Y(service-Z), request-X)

This means that the invoke action must fol-
low the submit_request action, and both actions
are related to the same request. The administra-
tor can use the IC-Service cultural theory defini-
tion language to specify other requirements as
well. For example, the following rule

if submit_request(request-X(cost= “low”))
then invoke(operation-Y(service-Z),
request-X) � provide_feedback
(operation-Y(service-Z), cost = “low”)

means that if the agent requests a service with
a low cost, the system will recommend services
that other clients considered cheap.

Creating recommendations
The recommendation process consists of

three steps:

1. Find the cultural theory rule that matches
the current observation.

2. Find the corresponding cultural action.
3. Find the set of scenes where the cultural ac-

tion is likely to be performed.

When an agent performs the submit_request
action, the observation corresponding to the
action is passed into the SICS where it is
matched with the antecedent part of the the-

ory. The CM uses the observation’s informa-
tion about the request to instantiate the conse-
quent rule’s variables. The corresponding cul-
tural action could be, for instance, invoke(...,
request-X). At the next step, for the given cul-
tural action, the CM finds the set of agents
that performed similar actions and the set of
scenes where actions have been performed.
Then it selects a set of agents most similar to
the agent that submitted the request and up-
dates the set of scenes accordingly. Next, it
calculates the agents’ similarity on the basis of
their past actions. Finally, the CM selects
scenes where the cultural action is most likely
to occur and recommends Web services from
the scenes to the request’s originator.

Further details on this process are available
elsewhere.10

Similarity configuration
The similarities of names, attributes, and

objects determines the similarity between ob-
served actions (such as submit_request, invoke,
and so on). The main element our system takes
into account is the request represented as a se-
quence of terms q = (t1, t2, …, t|q|), where |q| is
the length of the request, tj � �� and

T is a vocabulary of all terms from the col-
lection of requests Q = {q1, …, qn} that the
agent submits to the system, where |q| is the
total number of requests. We use two differ-
ent similarity metrics in the SICS Composer
Module to calculate the similarity between
requests:

■ the Vector Space Model (VSM) with Term
Frequency-Inverse Document Frequency
(TF-IDF) metric and

■ a WordNet-based semantic similarity metric.

To calculate the first metric, for each term
tj, nij denotes the number of occurrences of tj

in qi, and nj denotes the number of the re-
quests that contain tj at least once. We can ob-
tain the TF-IDF weight of the term tj in the re-
quest qi as follows:

where |qi| defines the length of the request qi.

w
n

q
n
ni j

i j

i j
,

,
log= ∗

⎛

⎝
⎜

⎞

⎠
⎟

j q∈{ }1, ,…

N o v e m b e r / D e c e m b e r 2 0 0 7 I E E E S O F T W A R E 5 1

The Composer
Module selects
scenes where
the cultural

action is most
likely to occur

and
recommends
Web services

from them.

The similarity between requests qi and qk is
defined using the cosine coefficient:

Here, wi = (wi1, …, wi|T|), wk = (wk1, …, wk|T|)
denote vectors of TF-IDF weights correspon-
ding to the requests qi and qk, and |T| is the
length of the vocabulary T.

For the second metric, we define a similar-
ity between requests

and

by first calculating the lexical similarity be-
tween any pair of their terms

and

We use the WordNet-based metric designed by
Nuno Seco, Tony Veale, and Jer Hayes to de-
fine a lexical similarity for all possible senses
of two terms:11

where

In this expression, S(tij, tkl) denotes the set of
concepts that subsume tij and tkl, and ic de-
notes a WordNet concept’s information con-
tent value, which is defined as

Here, hypo is the number of hyponyms—that is,
words whose meaning is included within that of
another word of a given concept, and maxwn is
the maximum number of existing concepts.

We extended this metric to deal with sets of
words. We formulated the problem of calcu-

lating the overall similarity between requests
qi and qk as the Maximum Weight Bipartite
Matching problem in a complete bipartite
graph, where terms from qi and qk define two
partitions of vertices and the obtained lexical
similarity values sim(tij, tkl) define weights of
edges. The goal is to find a matching—that is,
a subset of edges ejl = (tij, tkl) such that no two
edges in M share a vertex—with the maximum
total weight. This weight defines the similarity
between requests qi and qk. Specifically,

where

Example
We can now illustrate how the search

process takes place in practice. Suppose the
SICS receives the following request:

goal: get weather forecast for Rome, Italy;
operation: get weather;
input: city name, country name;
output: weather forecast (temperature,

humidity, and so forth).

The SICS matches the request action with the
theory’s antecedent and searches for scenes
that have performed the invoke action.

Suppose it finds the following situations:

1. invoke(...; getWeather (service = Global-
Weather), goal = get weather report for all
major cities around the world; ...);

2. invoke(...; conversionRate (service = Cur-
rencyConvertor), goal = get conversion rate
from one currency to another currency; ...);

3. invoke(...; getWeatherByZip (service =
DOTSFastWeather), goal = return the
weather for a given US postal code; ...).

The SICS recommends invoking services that it
considers relevant, according to previously ob-
served requests that are most similar to the cur-
rent request. So, in this example, SICS recom-
mends the getWeather operation of the Global-
Weather Web service and the getWeatherByZip
operation of the DOTSFastWeather service.

σjl
jl ij kle t t M

=
= () ∈⎧1

0

, , if edge

, otherwise
⎨⎨
⎪

⎩⎪

sim q q sim t ti k
M

jl ij kl
l

q

j

q ki

, max ,() = ()
==
∑∑ σ

11

ic t
hypo t

wn
wn

() = −
() +()

()1
1log

log max

sim t t icres ij kl
t S t t

wn t
ij kl

′
∈ () ()() =, max

,

sim t t

ic t ic t sim

ij kl

wn ij wn kl re

,()
= − () + () −1

1

2
2 ′′ ()()s ij klt t,

t l qkl k, , ,∈{ }1 …

t j qij i, , ,∈{ }1 …

q t t tk k k k qk
= ⎛

⎝
⎞
⎠1 2, ,...,

q t t ti i i i qi
= ⎛

⎝
⎞
⎠1 2, ,...,

sim q q w w
w w

w w w w
i k i k

i
T

k

i
T

i k
T

k

, cos ,() = () =

5 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

We use a
WordNet-based
metric to define

a lexical
similarity for
all possible

senses of two
terms.

Suppose that after analyzing the proposed
results, the agent invokes the getWeather op-
eration. After observing the invoke action,
SICS will mark this service as suitable for the
submitted request and, in particular, for the
lexical terms that occurred in the request.
Now, given a request for a service providing
information about Italy, the system is likely to
suggest the GlobalWeather Web service.

Experimental evaluation
We performed preliminary experiments to

evaluate system performance in terms of preci-
sion, recall, and F-measure. Precision measures
the fraction of relevant items among those rec-
ommended, recall measures the fraction of the
relevant items included in the recommenda-
tions, and F-measure is a trade-off between pre-
cision and recall:

Precision = (Relevant � Retrieved) /
Retrieved

Recall = (Relevant � Retrieved) /
Relevant

F = (2 * Precision * Recall) /
(Precision + Recall)

We used a collection of 20 Web services from

xMethods service registry (http://xMethods.
com) and divided them into five topic cate-
gories. For each category, we found four se-
mantically equivalent operations and formed
20 requests based on their short natural lan-
guage descriptions from Web Service Defini-
tion Language files.

We defined user profiles to simulate real
users’ behavior. A user profile contains a set of
requests and a set of Web service operations
relevant to these requests. We simulated a
user’s request-generation behavior by choos-
ing and submitting one of the requests ran-
domly. We simulated the result-selection be-
havior by choosing and invoking one of the
service operations to perform the task. The in-
tuition behind user profiles is that users will
submit a request for a service operation and,
after receiving suggestions, will invoke one of
the operations they consider to be relevant.
The SICS Remote Client monitors the invoca-
tion. During the simulation, we used a ran-
dom selection to choose which user submitted
a request to the system in a given moment.

Figure 4 shows precision, recall, and F-meas-
ure results for 100 recommendation requests
submitted to the system under four scenarios:
two for each similarity metric with four and 20

N o v e m b e r / D e c e m b e r 2 0 0 7 I E E E S O F T W A R E 5 3

(a)
0 20 40 60 80 100

1.0

0.8

0.6

0.4

0.2

0

Total number of requests

Pr
ec

is
io

n,
 re

ca
ll,

 F
-m

ea
su

re

Precision
Recall

F-measure

(b)
0 20 40 60 80 100

1.0

0.8

0.6

0.4

0.2

0

Total number of requests

Pr
ec

is
io

n,
 re

ca
ll,

 F
-m

ea
su

re

Precision
Recall

F-measure

(c)
0 20 40 60 80 100

1.0

0.8

0.6

0.4

0.2

0

Total number of requests

Pr
ec

is
io

n,
 re

ca
ll,

 F
-m

ea
su

re

Precision
Recall

F-measure

(d)
0 20 40 60 80 100

1.0

0.8

0.6

0.4

0.2

0

Total number of requests

Pr
ec

is
io

n,
 re

ca
ll,

 F
-m

ea
su

re

Precision
Recall

F-measure

Figure 4. System
performance in four
scenarios: (a) VSM
with TF-IDF, four
clients; (b) WordNet-
based semantic
similarity metric, four
clients; (c) VSM with
TF-IDF, 20 clients;
(d) WordNet-based
semantic similarity
metric, 20 clients.

clients each. For the TF-IDF syntactic similar-
ity metric, the results show performance in-
creases for all measures as the number of user
requests increases. For the WordNet-based se-
mantic similarity metric, precision decreases
slightly after some point. This is because the
lexical similarity used to match requests is too
generic, so the system produces false positive
recommendations. However, the semantic met-
ric’s recall is significantly higher than that of
the syntactic metric.

W e plan to extend our application to
deal with other important infor-
mation about Web services, such

as QoS parameters. Also, we have not specifi-
cally addressed security and privacy issues in the
work presented here; instead, we’ve assumed re-
ciprocal trust relations between developers and
the proposed system. However, the European
Union’s ongoing Serenity project includes secu-
rity and dependability research related to rec-
ommendation systems based specifically on IC-
Service; see www.serenity-project.org for more
details.

Acknowledgments
This work is partly funded by the following proj-

ects: QUIEW (Quality-Based Indexing of Web Infor-
mation, funded by Provincia Autonoma di Trento),
Serenity (System Engineering for Security and De-
pendability, funded by the European Commission),
and Mensa (Methodologies for the Engineering of
Complex Software Systems: Agent-Based Approach,
funded by the Italian government).

References
1. D. Martin et al., “OWL-S: Semantic Markup for Web

Services,” W3C member submission, Web Ontology
Working group, 2004; www.w3.org/Submission/OWL-S.

2. U. Keller, R. Lara, and A. Polleres, “WSMO Web Ser-
vice Discovery,” working draft, WSML Working
Group, 2004; www.wsmo.org/2004/d5/d5.1.

3. R. Bova et al., “Task Memories and Task Forums: A
Foundation for Sharing Service-Based Personal Pro-
cesses,” Proc. Int’l Conf. Service Oriented Computing
(ICSOC 07), LNCS 4749, Springer, 2007, pp. 365–376.

4. M. Kerrigan, “Web Service Selection Mechanisms in the
Web Service Execution Environment,” Proc. ACM
Symp. Applied Computing (SAC 06), ACM Press,
2006, pp. 1664–1668.

5. U.S. Manikrao and T.V. Prabhakar, “Dynamic Selection
of Web Services with Recommendation System,” Proc.
Int’l Conf. Next Generation Web Services Practices
(NWESP 05), IEEE CS Press, 2005, pp. 117–121.

6. W. Sherchan, S.W. Loke, and S. Krishnaswamy, “A
Fuzzy Model for Reasoning about Reputation in Web
Services,” Proc. ACM Symp. Applied Computing (SAC
06), ACM Press, 2006, pp. 1886–1892.

7. M. Claypool et al., “Implicit Interest Indicators,” Proc.
Int’l Conf. Intelligent User Interfaces, ACM Press,
2001, pp. 33–40.

8. E. Birukou et al., “IC-Service: A Service-Oriented Ap-
proach to the Development of Recommendation Sys-
tems,” Proc. ACM Symp. Applied Computing (SAC
07), ACM Press, 2007, pp. 1683–1688.

9. N. Kokash, A. Birukou, and V. D’Andrea, “Web Service
Discovery Based on Past User Experience,” Proc. Int’l
Conf. Business Information Systems (BIS 07), LNCS
4439, Springer, 2007, pp. 95–107.

10. E. Blanzieri et al., “Implicit Culture for Multi-agent In-
teraction Support,” Proc. 9th Int’l Conf. Cooperative
Information Systems (CoopIS 01), LNCS 2172,
Springer, 2001, pp. 27–39.

11. N. Seco, T. Veale, and J. Hayes, “An Intrinsic Informa-
tion Content Metric for Semantic Similarity in Word-
Net,” Proc. European Conf. Artificial Intelligence
(ECAI 04), IOS Press, 2004, pp. 1089–1090.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

5 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Authors

Aliaksandr Birukou is a PhD candidate in the University of Trento’s Department of
Information and Telecommunication Technology. His research interests are in data mining, mul-
tiagent systems, and recommendation systems, and his professional experience includes bank-
ing software development. He received his MS with distinction in applied mathematics and
computer science from the Belarusian State University, Minsk. Contact him at the Dept. of In-
formation and Communication Technology, Univ. of Trento, via Sommarive 14, 38050 Povo
(Trento), Italy; aliaksandr.birukou@dit.unitn.it.

Enrico Blanzieri is an assistant professor in the University of Trento’s Department of
Information and Telecommunication Technology. His research interests include soft computing,
artificial intelligence, and bioinformatics. He received his PhD in cognitive science from the Uni-
versity of Turin. Contact him at the Dept. of Information and Communication Technology, Univ.
of Trento, via Sommarive 14, 38050 Povo (Trento), Italy; enrico.blanzieri@dit.unitn.it.

Vincenzo D’Andrea is an associate professor in the University of Trento’s Department
of Information and Telecommunication Technology. His research interests include service-
oriented computing, free and open source licensing, and virtual communities. He received his
PhD in information technology from the University of Parma. He’s a member of the IEEE Com-
puter Society and the ACM. Contact him at the Dept. of Information and Communication Tech-
nology, Univ. of Trento, via Sommarive 14, 38050 Povo (Trento), Italy; vincenzo.dandrea@
dit.unitn.it.

Paolo Giorgini is a researcher at University of Trento. His research interests include the
development of requirements and design languages for agent-based systems and the applica-
tion of knowledge representation techniques to software repositories and software develop-
ment. He received his PhD in computer science from the Computer Science Institute of Univer-
sity of Ancona, Italy. He’s co-editor in chief of the International Journal of Agent-Oriented
Software Engineering. Contact him at the Dept. of Information and Communication Technology,
Univ. of Trento, via Sommarive 14, 38050 Povo (Trento), Italy; paolo.giorgini@dit.unitn.it.

Natallia Kokash is a PhD candidate in the University of Trento’s Department of Infor-
mation and Telecommunication Technology. Her research interests include information re-
trieval, service-oriented computing, and software engineering. She received her MS in informa-
tion science from the Belarusian State University, Minsk. She’s a member of the ACM. Contact
her at the Dept. of Information and Communication Technology, Univ. of Trento, via Som-
marive 14, 38050 Povo (Trento), Italy; natallia.kokash@dit.unitn.it.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

