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1. INTRODUCTION

Given the steadily growing number of patterns in the literature and online repositories, it is hard to be aware of the
patterns that exist and to select patterns appropriate to the problem at hand. In this paper, we present an overview
of existing approaches related to pattern search and selection.

Fifteen years ago, Gamma et al. (also known as GoF) stated the problem of selecting patterns: “With more than
20 design patterns in the catalog to choose from, it might be hard to find the one that addresses a particular design
problem, especially if the catalog is new and unfamiliar to you” [Gamma et al. 1995]. Since then, the problem
of selecting patterns has become more critical, as the number of documented patterns has been continually
increasing, adding to the selection problem also the problem of searching patterns from which to select. For
instance, Rising’s Pattern Almanac [Rising 2000] lists more than 1200 patterns. In the past ten years since the
publication of the almanac, many new patterns and books on patterns have been published. In 2007 Henninger
and Correa counted 2241 patterns focusing solely on those related to software [Henninger and Corrêa 2007].

In the domains containing more than ten patterns, the problem of choosing the appropriate pattern is particularly
hard to solve for inexperienced programmers, as illustrated by the following quote [Sommerville 2004]:

Only experienced software engineers who have a deep knowledge of patterns can use them effectively.
These developers can recognize generic situations where a pattern can be applied. Inexperienced
programmers, even if they have read the pattern books, will always find it hard to decide whether they
can reuse a pattern or need to develop a special-purpose solution.

We define the problems of searching and selecting patterns as follows:

—How to find patterns that can solve a particular problem?
—How to select the pattern to apply among the available ones?

Note that we intentionally do not focus on design problems, but, rather, on general problems, thereby considering
any kind of patterns as long as they fit the definition of pattern by Alexander [1977]:

"[...] each pattern describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice."

Therefore, examples of considered patterns include but not limited to organizational, pedagogical and business
patterns, or patterns for organizing conferences [Haskins 2006], conducting meetings [Haase and Miedl 2007;
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Schuemmer and Tandler 2007], building online communities [Homsky and Raveh 2007], etc. For the very same
reason we use “apply a pattern” through the paper, and not “implement a pattern”, since the latter is more specific
to code.

By searching patterns we mean getting information about existing patterns, no matter where this information is
coming from: the literature or the Internet. By selecting patterns we mean choosing a pattern in the list of patterns,
where the list is obtained at the stage of searching patterns or pre-defined (e.g., in a narrow domain that only
contains 9 patterns instead of searching one should look through all 9 patterns). These problem definition are
motivated by and consistent with the descriptions of the problems of search and selection of patterns in the works
of Henninger and Correa [2007], Weiss and Mouratidis [2008], Greene et al. [2003], Yoshioka et al. [2008] and
Deng et al. [2005].

We present an overview of existing approaches for pattern search and selection. Some of the approaches
reviewed in the paper were found by searching Google Scholar with the keywords "pattern search", "pattern
selection", "design pattern search", "design pattern selection", "software pattern search", "software pattern
selection" and by reviewing the first 100 of results. Also, we have reviewed past EuroPLoP, PLoP, and other *PLoP
proceedings. Some of the papers were cited in the reviewed papers. However, the most of the approaches were
known to the author already because of his previous work on pattern selection. We believe that the reviewed
approaches cover most of the work in the field of pattern search and selection.

This paper might be of interest to several groups of people. The primary audience for this paper are developers
of pattern repositories and pattern retrieval systems that are willing to enhance search and selection of patterns in
their systems. People developing pattern languages can benefit from this paper by choosing a format of the pattern
language in such a way that is is easier to provide selection tools for this language. For instance, they could provide
additional information required for the selection, or list forces and consequences explicitly. Conference organizers
can use reviewed approaches to provide search for related patterns to the patter writers. Other interested groups
include researchers on the application of patterns as well as people dealing with search and selection in different
domains (e.g., selecting products from an online catalog).

This paper has the following structure: Section 2 defines the problems of pattern searching and selection.
Section 3 introduces dimensions of analysis of approaches for pattern searching and selection. Those dimensions
are used to classify the existing approaches in Section 4. Section 5 discusses strengths and shortcomings of
existing approaches and outlines the directions for the future work, and Section 6 concludes the paper.

2. THE PROBLEMS OF PATTERN SEARCHING AND SELECTION

In this section we describe the problems of pattern searching and selection in detail. Figure 1 shows a simplified
overview of the process of applying a pattern to solve a problem. A person (developer, designer, etc.) starts with
the problem, which is formulated as a problem description. Then, at the optional step of searching patterns, the
problem description is used as a query to search for patterns that can potentially solve the problem. This step can
be skipped if not supported by the tool at hand (e.g., not all pattern catalogues support search). As the next step,
the person selects a pattern from the list of found/existing patterns. The final step is applying the pattern in order
to solve the problem. Note that in this paper we do not focus on the step of applying the pattern. The process can
be repeated several times, until the desired state (to have the original problem solved with the selected pattern) is
reached. A real process of applying patterns for solving problems can involve more steps, transitions, and feedback
loops. An interested reader can find more detailed descriptions of the process of applying patterns in [Wang et al.
2005; Yoshioka et al. 2008].

2.1 Pattern searching

The problem of searching patterns is that of getting information about existing patterns. This information can come
from literature, Internet, word-of-mouth communication such as interaction with colleagues and friends.

The problem of searching patterns presents the following challenges:
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Fig. 1. The process of applying patterns for solving problems

—Not all pattern descriptions are available on the Internet. For instance, in the study by Henninger and Cor-
rea [2007] 31% of software-related2 patterns were inaccessible via the Web and were only available in book
format (proceedings, journal, book).

—There is no single repository of pattern. Henninger and Correa counted 121 software-related pattern collections
(i.e., loosely coupled patterns located in a common location such as a repository, paper, book, website) that
contained more than one pattern.

—There is a variety of pattern description forms (those used in GoF [Gamma et al. 1995] or Pattern Oriented Soft-
ware Architecture (POSA) [Buschmann et al. 1996] books, Pattern Language Markup Language (PLML) [Fincher
2003] or PLMLx 3, to name a few). This makes harder the comparison of the patterns, for instance, to determine
if two patterns are the same, different, or versions of the same pattern.

—There are no standard mechanisms for indexing, accessing, and inter-linking pattern catalogs.

—There is no pattern search engine that covers most of the available patterns and is universally accepted by the
community, i.e. there is no Google for patterns.

—It is not possible to search using the form of the pattern, e.g., find a specific string in the problem and another
string in the trade-offs description of the pattern.

2.2 Pattern selection

The problem of selecting a pattern is choosing a pattern to apply from a list of patterns. The list of patterns is either
given, e.g., comes from a catalogue, or, as shown in Figure 1, is obtained as the result of searching patterns. Note
that in this paper we do not consider a more complex problem of selecting a pattern sequence, leaving this for
future work.

The problem of selecting patterns presents the following challenges:

—The selection is context-sensitive. For instance, in case of selecting a software pattern, the selection depends
on the application and the set of patterns already in place: what can be the right pattern to use in one system
might be inappropriate in another.

—The list obtained as the result of the search can contain a lot of patterns in different forms.

—It might be hard to choose the right pattern if there are duplicates and variants (slightly modified versions of
each other) among patterns [Henninger and Corrêa 2007].

2Henninger and Correa focused on those patterns related to software development and the software development process, including topics
such as software project management.
3Extended Pattern Language Markup Language. http://www.cs.kent.ac.uk/people/staff/saf/patterns/diethelm/plmlx_doc/
plml_doc.dtd.html
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—The list of patterns normally contains patterns which are solving not the problem at hand, but another, may
be similar, problem. Therefore, an analysis must be carried out first to check if the pattern addresses the right
problem.

—There are positive and negative consequences of applying a pattern. Therefore, some analysis may be needed
to estimate the consequences and see if the pattern is worth applying.

Depending on the domain of patterns, there can be other, more specific challenges in their selection. For
instance, for design patterns, non-functional requirements satisfied by patterns are mostly expressed as informal
text [Gross and Yu 2001], and therefore, it is hard to see if the pattern matches the problem specification.

2.3 Specifics of pattern search and selection

The problem of pattern search and selection is different from the general problem of search and selection of
relevant information as considered in Information Retrieval (IR)(see, e.g., [2006] for an example of the latter).
Pattern search and selection is different from IR because: (i) patterns are structured documents where different
parts express very different types of information, while in IR the documents are considered as a bag of words or a
set of weighted terms; (ii) patterns are often linked to each other in a pattern language or via user-created relations,
while the documents in IR are usually considered independently; and (iii) patterns accumulate the knowledge of
experts in dealing with problems, therefore it might be hard to find mapping between the language of patterns and
the language of inexperienced people facing the problems those patterns solve. Due to these reasons, pattern
search and selection requires specialized tools.

3. DIMENSIONS OF ANALYSIS

In this section, we introduce dimensions, which we use in Section 4 for the analysis of existing approaches. We
found it is convenient to split them into features, which are characteristics of the approach that support users
in solving the problems of searching and selection of patterns, and properties, which are characteristics of the
approach that are not directly related to the considered problems.

Note that several features are taken from the overview of existing User Interface (UI) pattern collections by
[Deng et al. 2005, p.7] and we refer readers interested in the comparison of pattern repositories to their work,
which provides a more detailed analysis of UI collections. The scope of the analysis in this paper is broader since
it goes beyond pattern collections. Therefore, some details mentioned in [Deng et al. 2005] and specific to pattern
collections, such as import/export of patterns to the collection, are not relevant in our analysis.

Table I lists the features, grouped in those supporting search, selection, and both.
We have considered the following features relevant to the problem of pattern search:

—Crawling: finding new links to patterns automatically on the Internet.
—Indexing: crawling is usually followed by indexing, which makes the content of the pattern searchable.
—Searching: how users can search patterns: using tags and keywords, searching the full text of pattern descrip-

tions, possibility to specify where in pattern description the keyword must be present, searching using additional
data, such as requirements, properties, quality goals addressed by patterns.

We have considered the following features relevant to the problem of pattern selection:

—Support for selection: how the approach supports users who need to select a pattern among several avail-
able alternatives. Possible forms of such support are: ranked list of results, which provides the ranked list
of results returned to a query; relevance score, which shows a relevance score of a pattern w.r.t. query;
algorithm/method, which is applied for selecting patterns.

—Recommendation facilities: providing suggestions on which pattern to choose for the problem at hand.

We have considered the following features relevant to the both problems of pattern search and selection:
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Table I. Features of pattern search and selection approaches
Search
Crawling
Indexing
Searching tag/keyword search

full text search
form-aware search
search based on additional data

Selection
Support for selection ranked list of results

relevance score
algorithm/method

Recommendation facilities
Search and Selection
Browsing display pattern list

view pattern details
Navigation
Linking within repository

with patterns in another repository
Collaboration users can add or edit patterns

users can add relationships
users can tag patterns
users can comment/annotate patterns
users can rate patterns

Table II. Properties of pattern search and selection
approaches

Domain
Requires pre-processing of patterns no

yes, manual
yes, automated

Pattern format human-readable
machine-processable
customizable

Method
Tool support
Accessibility
Availability
Interoperability

—Browsing: this includes features display pattern list, which shows the list of available patterns, and view
pattern details, which shows the complete description of a pattern.

—Navigation: going from one pattern to another via links or relations between them.

—Linking: possibility to specify the links or relations between patterns within the repository or with patterns from
other repositories.

—Collaboration: features that allow users to collaboratively add and edit patterns and relations between patterns,
tag, annotate, comment on, rate patterns and share their experience with using patterns.

Table II lists the properties of the approaches for pattern search and selection.
We have defined the following properties that are important for characterizing approaches, but are not falling in

the category of end-user features:
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—Domain: the subset of patterns considered by the approach. Examples include: HCI, software, security,
business, analysis, architecture4.

—Requires pre-processing of patterns: if it is necessary to pre-process the collection of patterns before applying
the approach. Required pre-processing can be manual or automated.

—Pattern format: if it is possible to get pattern description in human-readable and machine-processable formats
and whether it is possible to customize the pattern template (fields contained in a pattern).

—Method: does the approach provide a method, i.e., a systematic and ordered process for pattern search or
selection?

—Tool support: was the approach implemented in a tool or is it purely theoretical, i.e. provides the set of written
guidelines?

—Accessibility: how the tool delivered (via Internet, a desktop application).
—Availability: Is it possible to download the tool or access it on the Web?
—Interoperability: possibility to access the tool or repository via some API.

4. APPROACHES FOR PATTERN SEARCH AND SELECTION

In this section we review different approaches to pattern selection. They are grouped in several clusters, as
illustrated in Table III.

4.1 Pattern repositories and catalogs

Recently, there have been several efforts in making patterns available in online pattern repositories, where they
can be browsed and searched using various criteria. An early example was the Pattern Almanac [Rising 2000],
which is also available in electronic form5. More recent examples are the PatternShare6 site hosted by Microsoft
between 2006-2007, Yahoo Design Pattern Library7, Sun collection of J2EE patterns8, and computer-mediated
interaction patterns9. In this section, we review the most recent approaches approaches for selecting patterns
stored in such repositories. For a more complete overview of pattern collections and pattern repositories we refer
the reader to the survey papers by Deng et al. [2005] and by Henninger and Correa [2007].

To the best of our knowledge, most of the repositories created in the past remain oblivious to the advent of
Web 2.0 and list content defined by the repository creator without the possibility of collaborative editing, tagging,
bookmarking and other social features. The sad thing about this is no matter how heavily the repository is used
for searching patterns, it does not change and improve over time, if not maintained. However, several wiki-based
repositories such as PatternForge10 or Open Pattern Repository11 were created recently trying to overcome such
shortcomings and to use the power of the community in order to enrich repositories with tags, links and other
user-generated content.

In order to store patterns in a repository, a structured pattern representation must be adopted. There have been
several proposals for structural pattern representation, including the PLML, PLMLx, Mackenzie-Nickull Architectural
Patterns Meta Model [MacKenzie and Nickull 2005], and Entity Meta-Specification Language (EML) [Welicki et al.
2007].

4Note that domains may overlap, they are provided here as specified in the papers or tool websites, or as deduced from the available material
(if not explicitly mentioned)
5http://www.smallmemory.com/almanac
6patternshare.org
7http://developer.yahoo.com/ypatterns/
8http://java.sun.com/blueprints/patterns/
9http://www.cmi-patterns.org/
10http://www.patternforge.net/wiki/index.php?title=Main_Page
11http://patternrepository.org/
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Table III. Approaches for pattern search and selection
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Weiss and Birukou [2007] created a wiki-based pattern repository called PatternForge. The wiki organizes
short descriptions of patterns called pattlets in collections, and allowed for their tagging, linking to other pattlets
in a pattern language. Since the approach uses wiki, many useful features, such as navigation, linking, tagging,
commenting, searching for patterns come for free from the wiki or corresponding plugins. Unlike other approaches,
PatternForge aimed at supporting any kind of patterns as long as a pattlet description can be provided. Even
though the repository failed to build the community around it, PatternForge is still available on the Web.

The Pattern Language Network (PLaNet)12 developed a pattern repository for people using Web 2.0 in assess-
ment, learning and teaching, to capture and share their examples of good practice as patterns. The repository is
based on wiki, and therefore allows for easy search, comments, tagging, and linking patterns. It also provides
possibility to filter the list of patterns based on the author, the status of the pattern (seed idea, alpha, beta) or the
author’s confidence in the pattern (from 0 to 3). The repository is available online even though the PLaNet project
ended, however, the most recent pattern was added on the 2d of March 2009.

Open Pattern Repository (OPR) is an ongoing project that aims at creating a publicly available and freely usable
online repository for patterns. The focus is on architectural and design software patterns, but authors also envision
storing there information about software technologies (frameworks, APIs, etc.) in a pattern form. The repository
supports different pattern forms, adding, editing and removal of patterns by users, browsing by categories, search
of patterns matching certain criteria, and relationships between patterns (e.g., variants of a pattern). The repository
is accessible via REST interface and will soon be publicly available.

Greene et al. [2003] describe a tool that supports pattern-assisted design and development in HCI. The tool
provides means for creating patterns in standard or user-defined form, browsing them, navigating from one pattern
to another via links. Patterns should be entered in the repository where they are stored as XML documents and
can be visualized in human-readable form. Patterns can be searched using their full text or by querying subsets of
the fields of the patterns. They can be also annotated with user-defined properties, which can be also used for the
search. The tool also provides a mechanism for helping users to find patterns “answering” their questions. The
mechanism is based on decision trees and does not require manual intervention for providing recommendations.

4.2 Recommendation systems

Several approaches exploit past user experience in order to suggest suitable patterns. The REBUILDER [Gomes
et al. 2002] framework adopts a Case-Based Reasoning (CBR) approach, where cases represent situations in
which a pattern was applied in the past to a software design. REBUILDER supports the retrieval and adaptation of
patterns. Cases are described in terms of UML class diagrams. Cases are retrieved based on a combination of
structural similarity between the current design and a pattern, as well as the semantic distance between class
names and role names in the pattern.

Birukou and Weiss [2009] developed a multi-agent system for recommending patterns, called IC-Patterns. In the
system the patterns are selected using the Implicit Culture Framework (ICF), which recommends patterns based
on past user actions. The system also supports conventional IR (Information Retrieval) and CBR methods for
finding relevant patterns. IC-Patterns consists of a web-based user interface on the client side and a multi-agent
platform on the server side. A user accesses the system by submitting a query that includes a description of
the problem and a description of the project where the problem is encountered. The problem is described by a
set of keywords, optionally restricted to specific elements of the pattern description, e.g. problem, context. The
project description can be represented as a set of properties such as project size, required level of data protection,
etc. The prototype of IC-Patterns works for the security patterns, but the system can support different domains
and forms of patterns. An indexing of patterns for the IR search is preformed automatically using the Lucene

12http://www.planetspace.org.uk/
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IR library13. However, for the use of form-aware search a machine-processable structured pattern description is
required.

Shu-Hang et al. [2007] propose a pattern selection method based on a pattern clustering analysis algorithm
and a collaborative filtering recommendation algorithm. The method deals with requirement analysis patterns for
e-Business applications. In order to apply the clustering and recommendation algorithms, one must first provide
formal descriptions of project situations and patterns. Then, the method calculates pattern contribution coefficient,
pattern similarity degree, and correlation between patterns and project situations, based on the provided formal
descriptions. The calculated metrics are used for clustering and recommendations. It is hard to estimate the
effort required for providing formal descriptions of all patterns and project situations, and it is have to be done
manually. However, the paper reports on the evaluation where recommendations were compared with the decision
of software experts and proved to be useful.

4.3 Formal languages

This section describes approaches that use (semi-)formal languages and grammar for pattern representation and
base selection on such representation.

Hinojosa [2004] developed a cognitive model of the process software engineers employ to select a specific
implementation for a system design. The approach deals with the design patterns from Gamma et al. [1995]
classified under the category of behavioral patterns, because those patterns have most implementation strategies.
To achieve the goal, the patterns were mapped to a set of features consumed by the reasoning engine, based
on the Progol language. The author used the data about real world implementation decisions in order to infer
which features guided engineers to a specific implementation. As the result, for each of the behavioral design
patterns, the model provided a set of relevant features for each pattern. The approach by Hinojosa is interesting in
the sense that it tries to provide a cognitive model for human reasoning during the selection of patterns. However,
it is hardly scalable and applicable in different domains, since all patterns must be manually transformed into sets
of predicates and decisions on pattern selections must be processed manually.

Albin-Amiot et al. [2001] developed the Patterns-Box tool, which provides assistance in designing a software
architecture. The tool supports the choice of the right design pattern depending on the application context. The
tool operates with a repository of design patterns, where each design pattern must be first expressed in a formal
Pattern Description Language (PDL). During the selection, a formal model of the current application context is used
in order to find the most suitable pattern in the pattern repository. Patterns-Box also supports HTML navigation
between patterns and is integrated with another tool developed by authors.

Pearson and Shen [2010] describe a decision support system that recommends design patterns satisfying
contextual requirements such as privacy, security, etc. The system takes context requirements of the required
design as an input of a rule-based engine to trigger decisions about patterns that could be appropriate to use within
that context. The context requirements are elicited by a questionnaire. The approach is targeted at non-expert
developers and architects. The system deals with design patterns, which are parametrized based on the selection
criteria. The system does not depend on the format of the patterns as long as they are connected with the rules.
For each domain, rules and patterns must be created based upon industry practices in the domain. In other
words, the system developed by Pearson and Shen is a kind of an expert system which operates on top of expert
knowledge represented by the rules.

Mussbacher et al. [2006] present a goal-oriented requirement language (GRL) that formalizes the forces of
patterns and relations between patterns. The formalization and explicit representation of forces complements
conventional textual descriptions of the patterns and enables trade-off analysis of forces during the selection of
a suitable pattern. the formalization are GRL graphs that capture pattern forces and can be used to assess the
qualitative impact of various solutions to a functional goal. Moreover, the authors also provide several graphs that

13http://lucene.apache.org/java/docs/index.html
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formalize the relationships between forces of patterns and non-functional requirements common in the domain of
architecture design. Since the approach also formalizes connections between patterns in a pattern language, it
also supports the selection of combinations of patterns. The approach at the moment did not provide any tool
supporting the selection.

Weiss and Mouratidis [2008] apply GRL in the domain of security patterns. They go a couple of steps further
than Mussbacher et al. [2006] and apply Prolog reasoning on top of GRL representations of patterns and provide
a pattern search engine, supporting the selection of the security patterns. A user submits security and other
non-functional requirements as a query to the search engine, which returns the list of patterns fulfilling the specified
requirements. Furthermore, the approach supports the search for a combination of security patterns that meet a
specified set of requirements.

Zdun [2007] proposes an approach for software pattern selection based on desired quality attributes and
pattern relations. The approach requires formalizing the pattern relationships in a pattern language grammar and
annotation of the patterns with their effects on quality goals. This step is performed manually. From the pattern
language grammar pattern sequences are automatically derived and used for narrowing down the search space
to related patterns, thus decreasing the time spent for the evaluation of alternatives. In addition to the automatic
derivation of pattern sequences, the author proposes the concept of design spaces (an explicit representation of
alternative design options and reasons for choosing between those options) for documenting design decisions.
The design decisions are subsequently used for question-option-criteria (QOC) analysis of the design space,
thereby allowing one to obtain a detailed decision map for the design decision at hand. The author suggests that
the QOC analysis should only be performed if the information in the annotated pattern language grammar is not
sufficient for making an informed design decision.

Gross and Yu [2001] propose adding an explicit specification of non-functional requirements (NFRs) to the
description of design patterns and to use them for pattern selection. Their approach is semi-formal and requires
annotation of patterns with their contribution to NFRs and than manual analysis of the applicability of a pattern in a
certain context.

Wang et al. [2005] present a method for selecting design patterns that fulfill the non-functional requirements
of the architectural design. The method first uses a non-functional requirements framework (NFR) to retrieve a
prioritized list of patterns that might be suitable for a given set of requirements. Each pattern in the list is then
decomposed into components with AND or OR relationships hierarchically. The traceability from the components
of software architectural design to the components of design patterns is analyzed. Finally, the applicability of each
design pattern is determined using the NFR.

4.4 Search engines

There are several search engines for patterns. PatternSeer14 aimed at delivering a system that crawls and indexes
pattern descriptions on the Internet and makes them accessible to users via keyword-based search. Recently,
Google provided a custom search engine15 indexing several online pattern repositories. The problem with current
solutions is their limited coverage of patterns. This reminds one of the problems early Internet had – just eleven
years ago it was better to use several search engines to get more different results for a query.

4.5 Other approaches

Zimmermann et al. [2008] propose a decision-based design method, ArchPad, for domain-specific pattern selection.
The method is based on architectural decisions identified in the requirement models and consists of the four
refinement stages: 1) executive decisions, requirement analysis; 2) conceptual decisions including selection of
architectural patterns and key technology choices; 3) detailed technology decisions, design patterns as architecture

14Developed by Ademar Aguiar, now inactive
15Design pattern search. http://www.google.com/coop/cse?cx=000531763273211731096\%3Ab-lv61obcte
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alternatives; 4) vendor asset level decisions and selection of implementation, deployment and test patterns. As
a consequence, ArchPad supports several types of patterns as architectural decision alternatives: analysis
and architectural patterns at the executive and conceptual level, design patterns on the technology level, and
implementation and test patterns at the vendor asset layer. For each domain, ArchPad requires the creation of an
RADM, a Reusable Architectural Decision Model, which is made available like a pattern catalog or language. Each
RADM is created manually by experts and contains patterns that proved to be applicable in the past projects in
the domain. RADMs are thus artifacts that contain domain-specific decision models guiding practitioners through
pattern selection and application. Patterns in each RADM have to be updated over time, especially the patterns
related to implementation decisions must be adapted as technology matures.

Even though RADMs have to be created manually for each domain, they will prove useful in case there is a
number of projects in the same domain. Due to the analytical nature of the approach, the tool support is not
required, but can be provided in the future. One of the strengths of the method is that it originates from the analysis
of authors’ decision making and pattern selection practices in industry projects. The method goes beyond pattern
selection in the sense that it supports architecture decisions in general, not only those related to pattern selection.

Kung et al. [2003] propose a methodology for constructing expert systems for suggesting design patterns to
solve problems faced by designers. They have implemented a prototype, Expert System for Suggesting Design
Patterns (ESSDP), which selects design patterns based on the user’s requirements. A user interacts with the
system in a question-answer manner, which helps to narrow down the selection process. At the end of the
interaction, a suitable design pattern is offered to the user. The ESSDP system assumes the knowledge acquisition
as the primary step of the methodology. At this step, human experts must fill in the knowledge base with some
pre-defined rules. One of the limitations of the system is that it only supports rule-based knowledge bases.

5. DISCUSSION

From Table III we can see that existing approaches can be clustered into the following categories:

—Pattern repositories and catalogs provide support for storing, searching, browsing, navigation, and collabora-
tive tagging, linking, and annotation of patterns.

—Search engines provide crawling and search functionalities and do not store pattern descriptions, but just index
them.

—Recommendation systems provide suggestions on which pattern(s) could be applicable in a certain situation.
—Formal approaches propose (semi-)formal languages and frameworks for pattern representation and tools for

reasoning on such representations.
—Other approaches.

Existing approaches that support pattern users in the search and selection of patterns have several shortcom-
ings:

(1) they usually require additional effort during the authoring and selection of patterns. For instance, authors need
specify metadata about their patterns or formalize them in a certain language;

(2) once created, pattern repositories require effort in maintaining and updating information;
(3) most of the solutions are domain-specific with no relations to patterns from another domain or repository. For

instance, many solutions deal with design patterns proposed by GoF [Gamma et al. 1995], while there are
also security or HCI patterns that can be used together with design patterns;

(4) they rarely support collaboration and personalized recommendations. Thus, as [May and Taylor 2003] say,
much of the information how patterns are selected by users remains tacit despite the existence of these tools.

(5) most of the tools are not available after the end of the project, or even when the paper is published. Greater
availability of the tools, especially if they are open source, can enable code reuse and easier comparison
between the tools.
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From the observations above, we can suggest the following directions in the research on pattern search and
selection:

(1) Pattern search engines. Since PatternSeer is inactive, pattern repositories and Google Design Pattern
Search only index pre-defined collections of patterns, there is no pattern search engine that automatically
crawls pattern descriptions on the Internet. Henninger and Correa [Henninger and Corrêa 2007] provide some
insights on how this can be done. It is a challenging task, but the potential success can be huge, since the
pattern search engine is likely to be adopted by the pattern community.

(2) Pattern sequences. Existing approaches do not support automated collection and analysis of pattern
sequences, i.e., ways how patterns are used together in an application. Currently, it is only possible to do such
collection by asking users to annotate the design. However, such collection might become possible with the
spread of Model-Driven Software Development paradigm.

(3) Interoperability. Existing approaches rarely integrate with other tools or provide an open API. However, such
APIs can enable the development of cross-collection pattern search tools.

(4) Non-intrusiveness. The approaches should be less intrusive, i.e., more integrated with the conventional
workflow of the user. In some approaches, the amount of work for implementing the approach is roughly the
same as manual selection of patterns by experts would require. Wiki-based approaches sound promising in
this direction.

6. CONCLUSION

In this paper we have defined problems of pattern search and selection and reviewed existing approaches for
solving the problem. The approaches have been classified according to features and properties they provide.

In this survey we focused on different domains of patterns, including but not limited to software, HCI, business,
organizational patterns. Related, but very different problems of selecting architectural primitives [Zdun and Avgeriou
2008] and selecting pattern sequences have not been considered. Those are possible directions for future research.
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